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The problem of optimal allocation of radar resources is addressed. Open-loop optimal
strategies are obtained by direct optimization. The satisfaction of the Maximum Principle is
verified by a noniterative process. The structure of the solutions is investigated by extensive
numerical solutions and the main features of the optimal strategies are characterized.

I. Introduction

A ballistic missile defense (BMD) system uses its sensors for various missions such as detection and acquisition,
tracking, fire control, etc.

Missions “compete” over the same finite stockpile of sensor resources and have to be performed within certain
time intervals. Mission performance level depends on the amount of sensor resources allocated to it, and therefore
can be optimized by specific allocation. In general, optimality criteria of sensor resource allocation may be scenario
dependent.

An interim problem of the general resource optimization problem is radar tracking beam allocation. Classically, the
objective of the sensor allocation process in tracking has been to minimize the uncertainty in the tracking estimation
error of all relevant targets, using a given amount of radar resources. The first efforts to solve this problem took
place in the sixties and early seventies of the last century. Athans and Schweppe [1] used the Kalman–Bucy theory to
formulate an optimization problem for a single target where the states of the problem are the elements of the target’s
covariance matrix. The problem was constrained by the total amount of energy used and by the maximal peak power.
The Maximum Principle was employed to derive the optimal on–off solution to the problem. A simpler model had
been used by Schweppe and Gray [2], where the special case of a one-dimensional problem was considered under
some simplifying assumptions. Some basic structures of the optimal allocation have been revealed for constant
velocity and constant acceleration targets.

The next profound effort was the work of Heffes and Horing [3]. They considered the general case of multiple
targets with different trajectories, and proposed an iterative algorithm to solve the two-point boundary-value problem
(TPBVP) derived from the Maximum Principle. The allocation of each and every pulse in open loop is done in a
repeatable fashion. In realistic BMD scenarios to solve the TPBVP for every pulse is a formidable effort and it seems
that for this reason this line of research has been abandoned. Instead, dynamic programming approaches have been
employed to the problem. The shortcoming of these closed-loop methods is that the structure of the solution can no
longer be easily observed and heuristically understood.
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In recent years, there have been many works on using direct optimization tools to solve optimal control problems
[4–6]. The solutions are obtained by nonlinear programming (NLP) solvers and are verified by the Maximum
Principle. Our present work employs Heffes and Horing’s modeling assumptions and problem formulation and adds
two main contributions: a) the problem is solved by a direct optimization approach (unlike the indirect approach of
[3]) with the Maximum Principle serving as a a-posteriori verification tool; and b) the structure of the solution is
thoroughly investigated and the main features of the solution are identified.

The paper is organized as follows. Section II formulates the problem and the necessary conditions for optimality.
Section III proposes the direct optimization approach. In Sec. IV and Sec. V results are given for a single target and
multiple targets, respectively, and the main features are explored. Section VI concludes the paper.

II. Problem Formulation and Analysis
We search for the optimal allocation of radar pulses to targets being tracked. The objective function for the

optimization is a function of the estimation error covariance matrix.
The following equation is a basic model for the evolution of the state estimation error covariance matrix [4]

Xj(i + 1) = fj (Xj (i), uj (i)), i = 1, . . . , N − 1, j = 1, . . . , n (1)

where uj (i) is a binary number indicating which target is pulsed at time step i; Xj is the predicated error covariance
matrix of target j at a certain (fixed) future (discrete) time N ′; and N is the number of tracking time steps (thus
N � N ′). There are n ballistic targets, not necessarily identical.

Using a linearized Kalman filter (KF) [7], where the linearization is around a nominal ballistic trajectory, the set
of equations for radar tracking a ballistic target can be further written as follows [3]

Xj(i + 1) = Xj(i) − uj (i)Gj (Xj (i), i) i = 1, . . . , N, j = 1, . . . , n (2)

Here again, the control variables uj (i) are binary variables that indicate whether the radar directs energy at (i.e.,
“pulses”) the j th target at time ti ; Gj represents the improvement in the prediction accuracy which would result from
the assignment of the radar at the ith step to the j th target. For the complete modeling and a derivation of Gj , see
Appendix A.

For simplicity, we assume that the radar dwell time and the KF time step are identical. Thus only one target can
be pulsed during the KF time interval [ti , ti+1].

The objective is to minimize a weighted sum of certain functions of the targets’estimation error covariance matrix;
thus the optimization objective function can be written as follows

J =
n∑

j=1

wjf0(Xj (N ′)) (3)

where f0 is a function of the information state at N ′ � N , and wj is a weighting factor for the j th target.

Remark: For operational reasons, we might be more interested in the equivalent problem of minimizing the total
radar resources subject to a given (prescribed) accuracy. Appendix B addresses this formulation.

A discrete time Maximum Principle can be employed, provided the control set is convexified. Since the control
appears linearly in the state equation, the solution will nevertheless belong to the admissible set of unit vectors.
(Note that in case of a global constraint on the radar resources we assume that it is expressed as an integer number
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of allocation steps.) The following TPBVP results [8]

H(X, λ, η) =
n∑

j=1

−tr[ηj (i)Gj (Xj (i), i)λ
T
j (i + 1)] + λ0

n∑
j=1

N ′∑
i=1

ηj (i)

λj (i + 1) − λj (i) = −
[
∂H

∂X

]
j

λj (N) = wj

∂f0

∂Xj

u(i) = arg min
0�η(i)�1

H(X, λ, η)

(4)

where ∂H
∂X

is the so called “gradient matrix” whose (k, l) element is given by ∂H
∂xkl

,where xkl is the (k, l)th element of
X. Note that λ0 �= 0 if there is a global constraint and zero otherwise.

III. Direct Optimization Approach
In order to study the nature of the optimal strategies by direct optimization, and to keep the dimension of the

problem small, we will search for approximate solutions.
To this end, we subdivide the tracking period into a relatively small number of segments L, each segment

comprises an equal number of KF steps. Under this approximation, the control policy over each time segment
[tl, tl+1], l = 0, . . . , L − 1, is fixed (piecewise constant control). A new control variable pl,j , indicates the fraction
of the radar occupation time allocated to the j th target during the time interval [tl, tl+1]. In fact, pl,j represents all
combinations of a fix number of pulses allocated the target j over that interval.

Further, we will use the following approximation to Eq. (2)

Xj(i + 1) = Xj(i) − pj (i)Gj (Xj (i), i)

pj (i) = pj,l for i · dt ∈ [tl, tl+1], l = 0, 1, . . . , L − 1
(5)

where dt is the time step of the KF (and, by assumption, also the radar dwell time).
Note again that the exact modeling for the covariance propagation (2) should use

uj (i) =
{

1 if target j is pulsed

0 otherwise

for each KF step. Here we propose using a fixed value 0 � pj (i) � 1 in the covariance propagation equation over
the entire time interval [tl, tl+1].

Before we go on, we should justify the need for approximation. Suppose that we have a tracking period of 50 s
with the KF propagating in steps equal to the radar dwell time of, say, 100 ms. We then have a total sum of 500 pulses
for allocation to all targets. Even if we know the number of pulses needed per target (which we do not), say it is 20,
we still have (

500
20

)
= 5.6 × 1020

combinations to check for!
On the other hand, by subdividing the tracking period into 10 segments of 5 s each, we get only 10n unknowns

(10 for each target) to deal with and optimize. Even with dozens of targets, it is a tractable NLP problem that can be
solved in real time.

To validate the approximation, we will compare three simulation runs of a single target with KF steps of dt =
0.1 s:

1) Solving Eq. (2) with u alternating each step (10 Hz) between 0 and 1.
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2) Solving Eq. (2) with u alternating in 1 Hz between 0 and 1.
3) Solving Eq. (5) with p = 0.5.

In 1) we assume that during a 0.1 s interval the radar is pulsing the target, while the following 0.1 s interval the radar
is not pulsing the target, and the next 0.1 s interval the radar is pulsing the target again, etc. We assume that the
target’s state estimate is updated for intervals in which the radar is pulsing the target, and simply propagated forward
in time, using the dynamics of the target motion, when the radar does not pulse the target. For clarification, the radar
pulsing needs the full 0.1 s and then we only get one measurement update for the KF.

In 2) we assume that during a 1.0 s interval the radar is pulsing the target, while the following 1 s interval the radar
is not pulsing the target, etc. The radar dwell time remains 0.1 s, thus we get 10 consecutive KF updates, followed
by 10 steps of propagation without measurements using the dynamics of the target motion.

In 3) we propagate the KF using Eq. (5). Recall that this is never the case with the actual KF, since Eq. (5)
introduces one-half of the update due to measurement in each step. (One way to think of it, is as if the radar dwell
time is now 0.05 s in stead of 0.1 s. Note that a more exact way to consider shorter dwells would be to change the
radar covariance measurement matrix R, but then we lose the simple control-affine formulation of (5) which enables
solving the problem and proving optimality conditions.

Finally, the following two facts should be noticed: a) this is only an approximation, as the actual improvement
of the radar accuracy with dwell time cannot be described in such a simple way; and b) the optimal solution yields
mostly pj,l = 1 or 0 and interior values with 0 < pj,l < 1 appear in just a few time segments.

The results in terms of the predicted radial error uncertainty (1σr ) at the end of a tracking period (t = 20 s) are
within 5% accuracy (see Fig. 1).

Note that we present the predicted radial error uncertainty, hence when no measurements are taken, it remains
constant. The current radial error uncertainty is increasing during these intervals but not the predicted one since this
increase is already taken into account in the prediction. For example, at t = 11 s observe that the predicted uncertainty
by method 2) remains about 300 m. At the beginning of this step we predict from current uncertainty to 9 s ahead
(t = 20 s), thus propagating 90 steps using Eq. (A4)

P = M

M = APAT + LQLT
(6)

At t = 12 s the current uncertainty has increased by 10 steps of no measurement. However, we have only 8 s (thus
only 80 steps) to go till the prediction time. Clearly, the predicted covariance remains constant during this time
interval.

We therefore formulate the following NLP problem

Find the set p̃ = {pj,l � 0; j = 1, . . . , n, l = 0, . . . , L − 1} such that

min
p̃

J

subject to L local constraints

Pl ≡
n∑

j=1

pj,l � 1, l = 0, . . . , L − 1

and to the global constraint

L−1∑
l=0

Pl � PT

After solving this NLP problem we should also verify the optimality of the solution by checking for condition (4).
The Lagrange’s multipliers and a control switching function can be directly obtained from the solution (no iterations
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Fig. 1 Validating the approximation.

are needed) by the following recursion (see [3] and Appendix A)

λj (i) = λj (i + 1) + ∂H

∂Xj

= (I − uj (i)Sj (i))λj (i + 1)(I − uj (i)Sj (i))
T

Gj(i) = Xj(i)Sj (i)

mj ≡ tr(Gj (xj (i), i)λ
T
j (i + 1))

u(i) = arg min
0�η(i)�1

H(X, λ, η)

(7)

where (under our approximation) the control is piecewise constant, thus we have

uj (i) = pj,l ∀i · dt ∈ [tl, tl+1]
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Note that in order to satisfy the Maximum Principle the optimal solution should choose the target and the timings
with the highest values of the so-called “switching function” mj (the NLP solution is therefore checked to satisfy
this requirement; see example below).

In practice, a slightly different formulation is of interest with two different realistic constraints:
1) The maximal tracking resources will never exceed a certain percentage (always leaving room for detection

and other missions).
2) The minimal tracking resources will never go below a certain percentage (assuring a minimal pulsed and

avoid losing un-pulsed targets).
Therefore the revised problem formulation is given by

Find the set p̃ = {pj,l; j = 1, . . . , n, l = 0, . . . , L − 1} such that

min
p̃

J

subject to L local constraints

Pl ≡
n∑

j=1

pj,l � pmax, l = 0, . . . , L − 1

pj,l � pmin; j = 1, . . . , n, l = 0, . . . , L − 1

and to the global constraint (when applicable)

L−1∑
l=0

Pl � PT

The necessary conditions for optimality are not changed by this formulation which only affects the bounds of the
control set.

IV. Results: A Single Target
Assume for simplicity a two-dimensional scenario of a radar measuring range and elevation with a fixed zero mean

Gaussian noise of 100 m (1σ ) and 1 mrad (1σ ), respectively. A representative target is detected at a range of 800 km
from the radar. The tracking period is assumed to be 20 s; PT = 50% of the radar resources are allocated to tracking
the target (global resources constraint). The fixed-allocation time interval is taken as 1 s. We want to minimize the
(radial) position error uncertainty at a certain future time Tp s (in this case Tp = N ′ · dt). We will deal first with the
simpler original formulation with 0 � pj,l � 1.

Time histories of the prediction error uncertainty for Tp = {20, 50, 100} s are shown in Figs. 2–4, where the
piecewise constant p presented on the same plots, with a scale as depicted by the arrows. The optimal results at the
end of tracking (1σr ) are {79, 280, 656} m, respectively (piecewise constant lines indicate the allocation decision and
the continuous curves indicate the concomitant prediction error uncertainty).

The following phenomena can be observed:
1) When the prediction time (Tp) is at 20 s, most resources are near the end; the rest is at the beginning. The

solution is of a 1–0 type (on–off). Note that the prediction error uncertainty does not vary during the “0”
period.

2) When the prediction time is at 50 s, more resources are near the beginning. Note that partial allocation (p < 1)
is now optimal.

3) When the prediction time is at 100 s, resources are equally shared between the beginning and the end of the
tracking period. This result is not changed with further increasing of the prediction time, hence we may call
it the “asymptotic allocation”.

To understand the nature of the asymptotic allocation we study the problem of minimizing the velocity error
uncertainty at t = 20 s (the end of the tracking period). The allocation results are given in Fig. 5, with the final error
uncertainty (1σv) of 2.7 m/s.
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Fig. 2 Position error uncertainty at Tp = 20 s.

Fig. 3 Position error uncertainty at Tp = 50 s.
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Fig. 4 Position error uncertainty at Tp = 100 s.
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Note that the previous asymptotic allocation for minimizing the position error uncertainty at large prediction
times is obtained as the results of minimizing the velocity error uncertainty at t = 20 s. This can be readily explained
by the following observation in one-dimensional (N ′ is the discrete prediction time; N the discrete tracking period)

σ 2
r (N ′) = σ 2

r (N) + σ 2
v (N) dt2(N ′ − N)2 (8)

Clearly, the second term dominates the expression for sufficiently large N ′.
We now turn into the refined problem formulation, with pmin � pj,l � pmax. The values chosen are pmax = 0.7 and

pmin = 0.01. Figure 6 presents the results for minimizing the velocity error uncertainty at Tp = 20 s. The structure
of the solution remains the same (mostly Min–Max control) with a degradation of the performance by 13.5%. Note
that the error uncertainty is now continuously decreasing due to pmin > 0. In the remaining of this section, we will
retain this revised formulation.

Next we need to verify the necessary optimality conditions for the results.
Figure 7 presents the switching function m of the last numerical example based on Eq. (7). It is shown that the

condition for optimality is satisfied (up to discretization values), where λ0 and the corresponding threshold for m
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Fig. 5 Velocity error uncertainty at Tp = 20 s.
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Fig. 6 Velocity error uncertainty at Tp = 20 s; single target; new local constraints.
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are determined by the global constraint (PT = 50%). Note that the values pmax = 0.7, pmin = 0.01 do not allow for
a pure Max–Min allocation, thus at least one segment requires partial allocation. The switching function m should
cross the threshold during this segment.

Next we want to further investigate the structure of the optimal allocation. We start by increasing the angular
measurement noise. The above results used 1 mrad for this value. Figures 8–10 present the results for 5, 10, and
20 mrad, respectively.

We have obtained two structures essentially Max–Min–Max for the lower angular measurements noise level, and
essentially Max–Min–Max–Min–Max for the higher levels. Figure 11 presents the switching function for the last
case to verify its optimality.

In the above examples we have kept constant the range measurement error and only changed the angular one.
Decreasing the range standard deviation error from 100 to 5 m (maintaining the nominal elevation error of 1 mrad)
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Fig. 7 Switching function (nominal case).
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Fig. 8 Velocity error uncertainty and control structure; noise = 5 mrad.
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Fig. 9 Velocity error uncertainty and control structure; noise = 10 mrad.
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Fig. 10 Velocity error uncertainty and control structure; noise = 20 mrad.

Fig. 11 Switching function (high angular noise).
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yields an allocation structure similar to the last example (Figs. 10 and 11). A similar phenomenon occurs when we
keep the nominal values for both errors and increase the tracking period.

Consequently, a nondimensional factor

δ ≡ σr

σθ · �
(9)

has been empirically revealed to be a “policy transition indicator”, where � is the distance traveled by the target in
the course of the tracking period (70 km in the above examples).

It was numerically established, by repeated optimizations and simulations, that when δ is close to 1—the improve-
ment due to midpoint sampling is minimal and Max–Min–Max is the preferred strategy; whereas when δ gets smaller
(say 0.1) the reverse is true, and a middle sampling appears in a Max–Min–Max–Min–Max structure.

V. Results: Multiple Targets
Assume now that a second target is involved with a detection range of 500 km at the ( joint) time of the beginning

of the tracking period. The first target is still detected at 800 km. First we will repeat the investigation of the
predicted position uncertainty for various prediction times with no additional local constraints. The above three cases
Tp = {20, 50, 100} s are shown in Figs. 12–14, respectively. The allocation resembles the single target allocation
(mostly on–off, where the joint dead zone is essentially maintained), but favors the distant target (less accurate)
and provides it with the “sweet spots”. Moreover, the asymptotic allocation property is essentially preserved as can
be seen from Fig. 15. Increasing/decreasing the detection-range difference affect the results as shown in Figs. 16
and 17, respectively. When we increase the range between targets, further priority is given to the distant target. For
the case of closely spaced targets, equal priority is given to them and the solution nearly equalizes the predicted error
uncertainty (2.7–2.75 m/s).

As with the single target case, we impose now the local constraints with values: pmax = 0.7, pmin = 0.01. Figure 18
presents the results for minimizing the uncertainty in the velocity error uncertainty at Tp = 20 s. The structure of the
solution remains the same where the degradation of the performance is 25% for the double target case (13.5% for
the single target case).

It is interesting to remove the 50% global constraint while retaining the 70% local constraints (a trivial case with
a single target). The results for this case are shown in Fig. 19.

The nature of the result is preserved in all cases. At the former dead-zone new nonbinary allocation is developed.
Its contribution to performance however is negligible (less than 2%) hence it can be treated as “garbage time”.

Fig. 12 Predicted position error uncertainty at Tp = 20 s.
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Verifying optimality with multiple targets is more elaborate. We need to show that the optimal solution chooses
the target and the timings with the highest values of the index function mj in order to satisfy the Maximum Principle.
Figure 20 presents the results for the optimal allocation and the corresponding mj in the problem of minimizing the
velocity error uncertainty at t = 20 s for two targets detected at 800 km with a different Radar Cross Section entailing
a different measurement noise: for target 1, σθ = 0.005 and for target 2, σθ = 0.001. The Maximum Principle is
satisfied during the Max–Min allocation zones. The (unavoidable) partial allocation zone at t = 17 s does not strictly
comply with this condition: m1 and m2 are very close but still m1 > m2 and yet the allocation is reversed p1 < p2. A
considerable effort to redeem this situation revealed that it is highly sensitive, and very small changes in the allocation
strategies cause tremendous changes in mi , violating the Maximum Principle throughout the solution. Hence the
approximation scheme here seems to be is suboptimal.

Fig. 13 Predicted position error uncertainty at Tp = 50 s.

Fig. 14 Predicted position error uncertainty at Tp = 100 s.
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Fig. 15 Velocity error uncertainty at Tp = 20 s; targets at 800/500 km.

Fig. 16 Velocity error uncertainty at Tp = 20 s; targets at 1000/500 km.

Fig. 17 Velocity error uncertainty at Tp = 20 s; both targets at 500 km.
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Fig. 18 Velocity error uncertainty at Tp = 20 s; double targets; new local constraints.

Fig. 19 Velocity error uncertainty at Tp = 20 s; double targets; new local constraints; no global constraint.

Fig. 20 Switching functions for two targets.
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VI. Conclusions
The following are the main conclusions of this study:
1) The problem of optimal radar allocation can be approximately solved by a parameter optimization approach

with an accompanying noniterative verification process to check when the Maximum Principle is satisfied.
2) Due to the approximation the solution becomes suboptimal but the required computational effort is suitable

for real-time application of present day computers.
3) The structure of the solution with local and global constraints is primarily Max–Min–Max–Min–Max or

Max–Min–Max, depending on the noise levels and the tracking duration.
4) Time zones of the Min allocation contribute very little to the obtained accuracy.
5) A nondimensional parameter has been empirically identified to determine which of the main strategies is

valid in a specific case.
6) The allocation process has an asymptotic property whereby solutions for long enough periods are converging

to a single allocation strategy.
7) All of the above is applicable to a single as well as multiple targets.

Although the paper has dealt with two-dimensional scenarios, its results have been tested in three-dimensional
scenarios as well, with a radar location on and off the ballistic plane. All of the above findings have been validated.

Appendix A: Modeling
For simplicity we will omit that target’s index j .
For the target’s dynamics we use a flat earth two-dimensional scenario governed by the following dynamic

equations (Fig. A1)

dx

dt
= f1(x, h, v, γ ) = v · cos(γ )

dh

dt
= f2(x, h, v, γ ) = v · sin(γ )

dv

dt
= f3(x, h, v, γ ) = −1

2
ρ(h)v2 CDS

m
− g · sin(γ ) + w1

dγ

dt
= f4(x, h, v, γ ) = − cos(γ ) · g

v
+ w2

v

(A1)

where x is the range, h the altitude, v the velocity, γ the dive angle, m the mass, CD the drag coefficient, S the
reference area, ρ the density, g the gravity and w1, w2 are the disturbances.

Fig. A1 States definition.

537



BEN-ASHER AND COHEN

Let the radar measures slant rage and elevation angle to target. Thus we have

yk = g
k
+ v k, v k ∼ N(0, Rk)

g
k

= [
�k rk

]T

[
�k

rk

]
=

(
arcsin

(
zr,k−zk

rk

)
√

(xr,k − xk)2 + (zr,k − zk)2

) (A2)

where ()k denotes values at discrete time k and ()r,k denotes values of radar at this time; x, z are Cartesian coordinates
(z = −h); � is the elevation; r the range.

To obtain the error uncertainty propagation equation, we linearize around a nominal trajectory and we get an
expression for the covariance matrix P. When measurements are taken, we get the following improvement in the
current covariance matrix:

P = M − MCT[CMCT + R]−1CM

M = APAT + LQLT

A = ∂fi

∂xj

; C = ∂gi

∂xj

L =
[

0 0 1 0
0 0 0 1/v

]T

; Q =
[
σ 2

w1
0

0 σ 2
w2

]
; R =

[
σ 2

θ 0
0 σ 2

r

]
(A3)

In the prediction step we use

P = M

M = APAT + LQLT
(A4)

The value of G in Eq. (2) can be shown, after some calculations, to have the following form [3]

G(X(i), i) = X(i)[AN ′−i]−1CT
[
C[AN ′−i]−1X(i)[AN ′−i]−TCT + R

]−1
C[AN ′−i]−1X(i) ≡ X(i)S(i) (A5)

Appendix B : Reversed Formulation
For operational reasons we might be interested in the problem of minimizing the integral radar resources subject

to a given (prescribed) accuracy. Thus the problem becomes

Find the set p̃ = {pj,l; j = 1, . . . , n, l = 0, . . . , L − 1}
such that we minimize the total radar resources

min
p̃

J ; J =
L−1∑
l=0

Pl

subject to the constraints

Pl ≡
n∑

j=1

pj,l � pmax, l = 0, . . . , L − 1

pj,l � pmin; j = 1, . . . , n, l = 0, . . . , L − 1

wjf0(Xj (N)) � H ; j = 1, . . . , n

The latter constraint is the weighted required accuracy.
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The solutions turn out to be of the same structure. Moreover the problem of minimizing the predictive error
uncertainty with imposed limited radar resources and the problem of minimizing the total radar resources for a
given (required) accuracy are equivalent and a solution to one is also a solution to the other; this is a direct result
of the monotonic dependency between the two values. In fact, each solution set {resources, accuracy} is a Pareto
solution for the corresponding multiobjective optimization problem. We finally note that computation-wise there is
no significant difference between the two problem formulations.
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